
Recent Web Security Technology
Lieven Desmet – iMinds-DistriNet, KU Leuven
Lieven.Desmet@cs.kuleuven.be

SecAppDev Leuven 2016 (11/03/2016, Leuven)

About myself: Lieven Desmet

2

§ Research manager at KU Leuven
§ (Web) Application Security

§ Active participation in OWASP
§ Board member of the OWASP Belgium Chapter
§ Co-organizer of the OWASP AppSec EU

Conferences

§ Program director at SecAppDev

@lieven_desmet

iMinds-DistriNet, KU Leuven

3

§ Headcount:
§ 10 professors
§ 65 researchers

§ Research Domains
§ Secure Software
§ Distributed Software

§ Academic and industrial collaboration in 30+
national and European projects

https://distrinet.cs.kuleuven.be

Primer on Client-Side Web Security

4

§ Covers the landscape of
client-side Web security
§ State-of-the-art in web

security
§ State-of-practice on the Web
§ Recent research and

standardization activities
§ Security best practices per

category

Recent Web Security Technology
Server-side security policies, enforced by the browser

5

Sans Top 25 - OWASP Top 10

6

Focus on vulnerabilities and logical flaws in
the code, and server-side mitigations

This talk focuses on infrastructural support
as a complementary line of defense

Recent security technology on the web

Web Browser Web Server

HTTP Request

HTTP Response

7

Security

PolicyPolicy enforcement

in the browser

Overview
§ Introduction
§ #1 Securing browser-server communication
§ #2 Mitigating script injection attacks
§ #3 Framing content securely
§ Example security architecture: Combining CSP &

Sandbox
§ Wrap-up

8

Introduction

9

Recap: Web’s Security Model
§ Basic security policy for the web:
§ Same-Origin Policy

§ What does it mean for scripts running on
your page?

§ What does it mean for frames included
in your page?

10

Two basic composition techniques

<html><body>
…
<script src=“http://3rdparty.com/script.js”></script>
…
</body></html>

<html><body>
…
<iframe src=“http://3rdparty.com/frame.html”></iframe>
…
</body></html>

3rd party

3rd party

Script inclusion

Iframe integration

11

State of practice metrics

12

§ Assessment of the most popular
European Union websites
§ Top 1,000,000 websites from Alexa raking
§ Filter top 1,000 websites of 28 member states
§ Result: 23,050 European websites

Longitudinal study

13

§ Crawl up to 200 pages per website
§ Use a headless browser (PhantomJS)
§ Capture all data and headers sent by server

§ Compare two datasets:
§ September 2013
§ September 2015

Notice: we removed the websites with less than 50 successfully crawled pages from our dataset

#1 Securing browser-server
communication

14

Overview
§ Attacks:
§ Session hijacking
§ SSL Stripping

§ Countermeasures:
§ Use of SSL/TLS
§ Secure flag for session cookies
§ HSTS header
§ Public Key Pinning

15

Network attacks: Session hijacking

Web Browser Web Server

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Cookie:
PREF=ID=766awg-VZ

Cookie:
PREF=ID=766awg-VZ

!

16

HTTPS to the rescue…

Web Browser Web Server

HTTP Request

HTTP Response

17

HTTPS: State of practice

18

15%

85%

Usage in 2015

Availability of TLS (and SNI)

19

Problem cured?
§ TLS usage statistics (for popular websites!):
§ 67.5% of the websites don’t use TLS at all
§ Only 6.5% of the websites are using TLS for at

least half of their pages

§ Remaining problems:
§ Mixed use of HTTPS/HTTP and session cookies
§ Mixed content websites
§ SSL Stripping attacks

20

Mixed use of HTTPS/HTTP
§ Cookies are bound to domains, not origins

§ By default, cookies are sent both over
HTTPS and HTTP

§ Any request to your domain over HTTP
leaks the (session) cookies…

!

21

Secure flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ;
Domain=yourdomain.com; Secure

§ If set, the cookie is only sent over an encrypted
channel

§ Should be enabled by default for your session
cookies!

22

Secure cookies: State of practice

23

15%

85%

Usage in 2015

Mixed content inclusions:
TLS-enabled sites under attack

24
Source: Ping Chen et. al. A Dangerous Mix: Large-scale analysis of mixed-content websites. ISC 2013

User
(Browser)

Web Server

https://secure.example.com/

Script provider
http://scripts.com/eyecandy.js

https://secure.example.com/

http://scripts.com/eyecandy.js

Network attacker

embeds

!

Mixed content inclusions:
Large scale assessment of the state-of-practice

25

§ Alexa Top 100,000 domains
§ Crawled over 480,000 pages belonging to

the Alexa top 100,000
§ Discovered:
§ 18,526 TLS-protected sites
§ 7,980 sites have mixed content (43% of the sites)
§ 150,179 scripts are included over HTTP (26% of

the sites)

Source: Ping Chen et. al. A Dangerous Mix: Large-scale analysis of mixed-content websites. ISC 2013

Distribution of mixed-JavaScript sites
across the top Alexa Top 100,000

26

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0

500

1000

1500

2000

2500

3000

%
 o

f m
ix

ed
-J

av
aS

cr
ip

t
si

te
s

of

 T
LS

-e
na

bl
ed

 s
ite

s

Alexa Top 100,000 domains, grouped by 10,000

visited HTTPS website % Mixed-JavaScript website

Source: Ping Chen et. al. A Dangerous Mix: Large-scale analysis of mixed-content websites. ISC 2013

Distribution of mixed-JavaScript sites
across Top 10 site categories (McAfee’s web database)

27

0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

0

500

1000

1500

2000

2500

%
 o

f m
ix

ed
-J

av
aS

cr
ip

t
si

te
s

of

 T
LS

-e
na

bl
ed

 s
ite

s

Alexa Top 100,000 domains, grouped by McAfee’s site categories

visited HTTPS websites % Mixed-JavaScript website

Source: Ping Chen et. al. A Dangerous Mix: Large-scale analysis of mixed-content websites. ISC 2013

Browsers allowing mixed-content

28

§ Browsers are more and more blocking
mixed-content
§ Mobile browsers were lagging behind

§ Safari 9 and Android 5.x block mixed content
Source: Qualys, February 2014

HTTP to HTTPS bootstrapping

Web Browser Web Server

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS

29

HTTP to HTTPS bootstrapping
§ HTTP 301/302 response

§ Location header redirects browser to the resource over
HTTPS

§ Location: https://mysite.com/

§ Meta refresh
§ Meta-tag in HEAD of HTML page
§ <meta http-equiv="refresh"

content="0;URL='https://mysite.com/'">

§ Via JavaScript
§ document.location = “https://mysite.com”

30

Network attacks: SSL Stripping

Web Browser Web Server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Moxie Marlinspike, BlackHat DC 2009

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS

!

31

Strict Transport Security (HSTS)
§ Issued by the HTTP response header

§ Strict-Transport-Security: max-age=60000

§ If set, the browser is instructed to visit this domain only
via HTTPS
§ No HTTP traffic to this domain will leave the browser

§ Optionally, also protect all subdomains
§ Strict-Transport-Security: max-age=60000; includeSubDomains

§ HSTS Browser Preloading:
§ https://hstspreload.appspot.com/

32

HSTS: State of practice

33

15%

85%

Usage in 2015

HSTS: availability in browsers

34

But can I trust the CAs ?
§ Comodo (March 2011)

§ 9 fraudelent SSL certificates

§ Diginotar (July 2011)
§ Wildcard certificates for Google, Yahoo!, Mozilla,

WordPress, …

§ Breaches at StartSSL (June 2011) and
GlobalSign (Sept 2012) reported unsuccessful

§ …

!

35

Public Key Pinning (HPKP)
§ Issued as HTTP response header

§ Public-Key-Pins: max-age=2592000;
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
report-uri="http://example.com/pkp-report"

§ Freezes the certificate by pushing a fingerprint
of (parts of) the certificate chain to the browser

§ Options: max-age, includeSubdomains, report-
uri

36

HPKP: state-of-practice

37

Recap: Securing browser-server communication

38

§ Use of TLS
§ be aware of mixed-content inclusions!

§ Secure flag for cookies
§ to protect cookies against leaking over HTTP

§ HSTS header
§ to force TLS for all future connections

§ Public Key Pinning
§ to protect against fraudulent certificates

Secure Communication Score (1)

39

Secure Communication Score (2)

40

#2 Mitigating script injection
attacks

41

Overview
§ Attack:
§ Cross-Site Scripting (XSS)

§ Countermeasures:
§ HttpOnly flag for session cookies
§ X-Content-Type-Options header
§ Content Security Policy (CSP)
§ Subresource Integrity header

42

Example: Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

P

Attacker

P

!

43

HttpOnly flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ; Domain=yourdomain.com; Secure;
HttpOnly

§ If set, the cookie is not accessible via DOM
§ JavaScript can not read or write this cookie

§ Mitigates XSS impact on session cookies
§ Protects against hijacking and fixation

§ Should be enabled by default for your session cookies!

44

HttpOnly: state-of-practice

45

15%

85%

Usage in 2015

Misinterpretation of content

46

§ Browsers are very relax in how content get
processed

§ To detect how the content may be
displayed/executed, browser try to detect the
content type

§ Attackers can confuse the browser (eg. by
sending scripts as images)
§ For the server, the resources are harmless images
§ For the client, the resources are interpreted as scripts

X-Content-Type-Options

47

§ To disable this ‘automatic sniffing’
behavior, browser can use:
§ X-Content-Type-Options: nosniff

§ Best practice for all resources:
§ Explicit MIME content types on server
§ Use X-CTO to disable client-side sniffing

X-Content-Type-Options:
State of practice

48

15%

85%

Usage in 2015

Content Security Policy (CSP)
§ Issued as HTTP response header

§ Content-Security-Policy: script-src 'self'; object-src
'none'

§ Specifies which resources are allowed to be
loaded as part of your page

§ Extremely promising as an additional layer of
defense against script injection

49

CSP set of directives
§ There are a whole set of directives
§ Here we discuss CSP v1.1 (February 11, 2014)

§ default-src
§ Takes a sourcelist as value
§ Default for all resources, unless overridden by

specific directives
§ Only allowed resources are loaded

50

CSP source lists
§ Space delimited list of sources

§ ‘self’
§ ‘none’
§ origin(s)

§ Examples
• https://mydomain.com
• https://mydomain.com:443
• http://134.58.40.10
• https://*.mydomain.com
• https:
• *://mydomain.com

51

CSP set of directives (2)
§ script-src

§ From which sources, scripts are allowed to be included

§ object-src
§ Flash and other plugins

§ style-src
§ stylesheets

§ img-src
§ images

§ media-src
§ sources of video and audio

52

CSP set of directives (3)
§ child-src

§ list of origins allowed to be embedded as frames
§ replaces the deprecated frame-src directive

§ font-src
§ web fonts

§ connect-src
§ To which origins can you connect (e.g. XHR, websockets)

§ frame-options
§ Control framing of the page

§ sandbox
§ Trigger sandboxing attribute of embeded iframes

53

CSP requires sites to “behave”
§ Inline scripts and CSS is not allowed
§ All scripts need to be externalized in dedicated JS

files
§ All style directives need to be externalized in

dedicated style files
§ Clean code separation

§ The use of eval is not allowed
§ To prevent unsafe string (e.g. user input) to be

executed
54

<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

This	link	shows	an	alert!

Example: inline scripts

<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

This	link	shows	an	alert!

page.html

55

Example: externalized scripts

<script	src="myscript.js"></script>
This	link	shows	an	alert!

page.html

function	runMyScript()	{
alert('My	alert');
}
document.addEventListener('DOMContentReady',	
function	()	{
document.getElementById('myLink')

.addEventListener('click',	runMyScript);
});

myscript.js

56

External JS

JavaScript code

Binding to page

Insecure relaxations, but be careful!
§ To temporary allow inline scripts
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline'

§ To temporary allow eval
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline' 'unsafe-eval'

§ To temporary allow inline style directives
§ Content-Security-Policy: style-src 'self' 'unsafe-

inline'

57

Be

careful!

Script/style nonces and hashes

58

§ To allow controlled inline-scripts:
§ Mark your script with a nonce

Content-Security-Policy: default-src 'self'; script-src 'self'
https://example.com 'nonce-Nc3n83cnSAd3wc3Sasdfn939hc3‘
<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3">
alert("Allowed because nonce is valid.")
</script>

§ Add a hash of your inline script to the policy
Content-Security-Policy: script-src 'sha256-
YWIzOWNiNzJjNDRlYzc4MTgwMDhmZDlkOWI0NTAyMjgyY2MyMWJl
MWUyNjc1ODJlYWJhNjU5MGU4NmZmNGU3OAo='

<script>alert('Hello, world.');</script>
sha256

CSP 1.1

CSP reporting feature
§ CSP reports violations back to the server

owner
§ server owner gets insides in actual attacks

• i.e. violations against the supplied policy
§ allows to further fine-tune the CSP policy

• e.g. if the policy is too restrictive

§ report-uri directive
§ report-uri /my-csp-reporting-handler
§ URI to which the violation report will be posted

59

Example violation report

Content-Security-Policy:	script-src 'self'	https://apis.google.com;	
report-uri http://example.org/my_amazing_csp_report_parser

{
"csp-report":	{
"document-uri":	"http://example.org/page.html",
"referrer":	"http://evil.example.com/",
"blocked-uri":	"http://evil.example.com/evil.js",
"violated-directive":	"script-src 'self'	https://apis.google.com",
"original-policy":	"script-src 'self'	https://apis.google.com;	report-

uri http://example.org/my_amazing_csp_report_parser"
}
}

CSP violation report

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)60

CSP Reporting: one step further
§ Apart from reporting violations via the

report-uri directive
§ CSP can also run in report only mode
§ Content-Security-Policy-Report-Only: default-src:

'none'; script-src 'self'; report-uri /my-csp-reporting-
handler

§ Violation are reported
§ Policies are not enforced

61

Some CSP examples
§ Examples:
§ Mybank.net lockdown
§ SSL only
§ Social media integration
§ Facebook snapshot

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)62

Example: mybank.net lockdown

63

§ Scripts, images, stylesheets
§ from a CDN at https://cdn.mybank.net

§ XHR requests
§ Interaction with the mybank APIs at https://api.mybank.com

§ Iframes
§ From the website itself

§ No flash, java, ….

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

Content-Security-Policy: default-src 'none';
script-src https://cdn.mybank.net;
style-src https://cdn.mybank.net;
img-src https://cdn.mybank.net;
connect-src https://api.mybank.com;
child-src 'self'

Content-Security-Policy: default-src https: ;
script-src https: 'unsafe-inline';
style-src https: 'unsafe-inline'

Example: SSL only

64

§ Can we ensure to only include HTTPS
content in our website?

§ Obviously, this should only be the first
step, not the final one!

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

Content-Security-Policy: script-src https://apis.google.com
https://platform.twitter.com;
child-src https://plusone.google.com https://facebook.com
https://platform.twitter.com

Example: social media integration
§ Google +1 button

§ Script from https://apis.google.com
§ Iframe from https://plusone.google.com

§ Facebook
§ Iframe from https://facebook.com

§ Twitter tweet button
§ Script from https://platform.twitter.com
§ Iframe from https://platform.twitter.com

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)65

X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
.spotilocal.com:	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
.spotilocal.com:	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

Example: Facebook snapshot

66

Third-party JavaScript is everywhere

67

§ Advertisements
§ Adhese ad network

§ Social web
§ Facebook Connect
§ Google+
§ Twitter
§ Feedsburner

§ Tracking
§ Scorecardresearch

§ Web Analytics
§ Yahoo! Web Analytics
§ Google Analytics

§ …

68

Number of remote script providers per site

69

• 88.45% includes
at least 1 remote
JavaScript library

• 2 out of 3 sites
relies on 5 or
more script
providers

• 1 site includes up
to 295 remote
script providers

Source: Nick Nikiforakis et. al. You are what you include:

Large-scale evaluation of remote JavaScript inclusions. CCS 2012

Most popular JavaScript libraries and APIs

70

Offered service JavaScript file % Alexa Top 10K

Web analytics www.google-analytics.com/ga.js 68,37%

Dynamic Ads pagead2.googlesyndication.com/pagead/show_ads.js 23,87%

Web analytics www.google-analytics.com/urchin.js 17,32%

Social Networking connect.facebook.net/en_us/all.js 16,82%

Social Networking platform.twitter.com/widgets.js 13,87%

Social Networking & Web
analytics

s7.addthis.com/js/250/addthis_widget.js 12,68%

Web analytics & Tracking edge.quantserve.com/quant.js 11,98%

Market Research b.scorecardresearch.com/beacon.js 10,45%

Google Helper Functions www.google.com/jsapi 10,14%

Web analytics ssl.google-analytics.com/ga.js 10,12%

Source: Nick Nikiforakis et. al. You are what you include:

Large-scale evaluation of remote JavaScript inclusions. CCS 2012

CSP: State of practice

71

15%

85%

Usage in 2015

CSP 1.0: State of practice

72
http://caniuse.com/#search=csp

What’s next in CSP?

73

§ CSP 2.0 introduces a set of new directives
§ DOM events are now fired upon violations
§ Allows the application to be CSP-aware

§ Extensions to CSP:
§ upgrade-insecure-requests instructs the

browser to fetch resources over https
§ block-all-mixed-content achieves strict

mixed content checking

CSP 2.0: State of practice

74
http://caniuse.com/#search=csp

Subresource Integrity (SRI)

75

§ A lot of resources are served by third-party
services (content delivery networks)
§ “Either you trust a CDN, or you host your scripts

yourself”

§ SRI guarantees the integrity of scripts
loaded in the browser
<script src="https://code.jquery.com/jquery-2.1.3.min.js"

integrity=“sha256-TXuiaAJuML3…uMLTXuiaAJ3”
crossorigin=“anonymous”></script>

Subresource Integrity

76

§ Allows you to specify a hash of an external resource
§ Using the integrity attribute on script or link tags

§ Browsers verify this hash before loading the file
§ Refuse to load the file if the hash does not match

§ SRI supports the specification of multiple hashes
§ The strongest one available will be used by the browser

<script src=”myapplication.js”
integrity=“sha256-… sha512-… ”>

</script>

<link href=“myapp.css” type=“text/css”
integrity=“sha384-… sha512-…” />

Recap: Mitigating script injection attacks
§ HttpOnly flag for session cookies

§ To protect cookies against hijacking and fixation from JavaScript

§ X-Content-Type-Options header
§ Disables client-side MIME sniffing

§ Content Security Policy (CSP)
§ Domain-level control over resources to be included
§ Most promising infrastructural technique against XSS
§ Interesting reporting-only mode

§ SubResource Integrity (SRI)
§ Protects the integrity of third-party served resources

77

Injection Mitigation Score (1)

78

Injection Mitigation Score (2)

79

#3 Framing content securely

80

Overview
§ Attacks:
§ Click-jacking
§ Same domain XSS

§ Countermeasures:
§ X-Frame-Options header / frame-ancestors
§ HTML5 sandbox attribute for iframes

81

Click-jacking

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010)

!

82

Unsafe countermeasures
§ A lot of unsafe ways exist to protect against

clickjacking
§ if (top.location != location)

top.location = self.location;
§ if (parent.location != self.location)

parent.location = self.location;

§ Can easily be defeated by
§ Script disabling/sandboxing techniques
§ Frame navigation policies
§ XSS filters in browsers

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010) 83

X-Frame-Options
§ Issued by the HTTP response header
§ X-Frame-Options: SAMEORIGIN
§ Indicates if and by who the page might be

framed

§ 3 options:
§ DENY
§ SAMEORIGIN
§ ALLOW-FROM uri

84

XFO: State of practice (deprecated)

85

15%

85%

Usage in 2015

XFO has been integrated in CSP

86

§ New CSP directive: frame-ancestors
§ Content-Security-Policy: frame-ancestors

https://partnerA.com https://partnerB.com

§ In contrast to X-Frame-Options, a
sourcelist is allowed
§ Common advice is to tailor per partner

CSP 1.1

Limitations of framing content in same origin

87

§ Iframe integration provides a good
isolation mechanism
§ Each origin runs in its own security context,

thanks to the Same-Origin Policy
§ Isolation only holds if outer and inner frame

belong to a different origin

§ Hard to isolate untrusted content within
the same origin

!

HTML5 sandbox attribute
§ Expressed as attribute of the iframe tag
§ <iframe src= "/untrusted-path/index.html"

sandbox></iframe>
§ <iframe src="/untrusted-path/index.html" sandbox=

"allow-scripts"></iframe>

§ Level of Protection
§ Coarse-grained sandboxing
§ ‘SOP but within the same domain’

88

Default sandbox behavior
§ Plugins are disabled

§ Frame runs in a unique origin

§ Scripts can not execute

§ Form submission is not allowed

§ Top-level context can not be navigated

§ Popups are blocked

§ No access to raw mouse movements data
89

Sandbox relaxation directives
§ Relaxations:

§ allow-forms
§ allow-popups
§ allow-pointer-lock
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

§ Careful!
§ Combining allow-scripts & allow-same-origin voids the sandbox

isolation

§ Plugins can not be re-enabled

90

HTML5 sandbox

91

Sandbox has been integrated in CSP

92

§ New CSP directive: sandbox
§ Content-Security-Policy: sandbox

§ Content-Security-Policy: sandbox allow-scripts

§ Similar options apply:
§ allow-forms
§ allow-pointer-lock
§ allow-popups
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

CSP 1.1

Recap: Framing content securely
§ CSP: Frame ancestors
§ Robust defense against click-jacking
§ Any state-changing page should be protected

§ CSP: Sandbox attribute
§ Coarse-grained sandboxing of resources and

JavaScript
§ Interesting enabler for security architectures

93

Secure Framing Score (1)

94

Secure Framing Score (2)

95

Example security architecture:
Combining CSP & Sandbox
“Securing the Client-Side: Building safe web applications with HTML5” (Mike West,
Devoxx 2012)

96

CSP & HTML5 sandbox as security enabler

97

§ Combination of CSP and HTML5 sandbox
§ Enabling technologies for drafting a web

application security architecture
§ Allows to define whether or not certain

functions/scripts are allowed to run in the origin of
the site

§ Presented by Mike West at Devoxx 2012
§ Used for document rendering in ChromeOS, …

Example of sandboxing unsafe javascript

98

Main site
Sandboxed JS

execution
environmentSecured with CSP

Delegates insecure
executions to the
sandboxed iframe

Web Messaging

Sandboxed iframe
Runs in unique origin

Allowed to run JS

Main page (index.html)

99“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

Content-Security-Policy:	script-src 'self'

<html><head>
<script	src="main.js"></script>

</head>	
<body>
Click	here
<iframe id="sandboxFrame"	sandbox="allow-scripts"	

src="sandbox.html">
</iframe>
<div	="#content"></div>

</body></html>

Sandboxed frame (sandbox.html)

100“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

<html><head>
<script>

window.EventListener('message',	function(event)	{
var command	=	event.data.command;

var context	=	event.data.context;
var result	=	callUnsafeFunction(command,	context);
event.source.postMessage({

html:	result},	event.origin);
});

</script>
</head></html>

Main script (main.js)

101“Securing the Client-Side: Building safe web applications with HTML5” (Mike West, Devoxx 2012)

document.querySelector('#click').addEventListener('click',
function(){
var iframe =	document.querySelector('#sandboxFrame');

var message	=	{
command	=	'render';
context	=	{thing:	'world‘}};
iframe.contentWindow.postMessage(message,	'*');

});

window.addEventListener('message',	function(event){
//Would	be	dangerous	without	the	CSP	policy!
var	content	=	document.querySelector('#content');
content.innerHTML	=	event.data.html;
});

And what’s next?

102

§ Seamless integrating unsafe input with the
sandbox attribute
§ <iframe sandbox seamless srcdoc="<p>Some

paragraph</p>"> </iframe>

§ seamless attribute
§ Renders visually as part of your site
§ Only for same-origin content

§ srcdoc attribute
§ Content as a attribute value instead of a remote page

Wrap-up

103

Conclusion

104

§ Whole new range of security features
§ Browser-side enforcement, under control of the server

§ NOT a replacement of secure coding
guidelines, but an interesting additional line of
defense for
§ Legacy applications
§ Newly deployed applications

§ And most probably, there is many more to
come in the next few years…

Is there a correlation between security features
and website popularity?

105

State-of-practice ?

106

§ Secure Communication
§ HTTPS support
§ Secure Cookies
§ Strict-Transport-Security

§ XSS Protection
§ HttpOnly cookies
§ X-Content-Type-Options
§ Content-Security-Policy

§ Secure Framing
§ X-Frame-Options

Scores per country or vertical …

107
Belgium (2015) Finance (2015)

References

108

§ STREWS: European Web Security Roadmap, https://www.strews.eu/images/STREWS-D3.2-roadmap.pdf

§ Primer on Client-Side Web Security, http://www.springer.com/gp/book/9783319122250

§ P. Chen, N. Nikiforakis, L. Desmet and Ch. Huygens. A Dangerous Mix: Large-scale analysis of mixed-content websites
(ISC 2013)

§ N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, Ch. Kruegel, F. Piessens, G. Vigna, You are what
you include: Large-scale evaluation of remote JavaScript inclusions (CCS 2012)

§ Ph. De Ryck et al., Web-platform security guide: Security assessment of the Web ecosystem (STREWS Deliverable D1.1)

§ Mike West. An introduction to Content Security Policy (HTML5 Rocks tutorials)

§ Mike West. Confound Malicious Middlemen with HTTPS and HTTP Strict Transport Security (HTML5 Rocks tutorials)

§ Mike West. Securing the Client-Side: Building safe web applications with HTML5 (Devoxx 2012)

References (2)

109

§ Mike West. Play safely in sandboxed iframes (HTML5 Rocks tutorials)

§ Ivan Ristic. Internet SSL Survey 2010 (Black Hat USA 2010)

§ Moxie Marlinspike. New Tricks for Defeating SSL in Practice (BlackHat DC 2009)

§ B. Sterne, A. Barth. Content Security Policy 1.0 (W3C Candidate Recommendation)

§ D. Ross, T. Gondrom. HTTP Header Frame Options (IETF Internet Draft)

§ J. Hodges, C. Jackson, A. Barth. HTTP Strict Transport Security (HSTS) (IETF RFC 6797)

§ C. Evans, C. Palmer, R. Sleevi. Public Key Pinning Extension for HTTP (IETF Internet Draft)

§ Can I use … ?, http://caniuse.com/

§ A. Barth, D. Veditz, M. West, Content Security Policy 1.1, W3C Working Draft 11 February 2014

§ G.Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a study of clickjacking vulnerabilities
at popular sites (W2SP 2010)

